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Abstract

This paper presents new bounds, heuristics, and an exact algorithm for the Pallet Loading Problem (PLP). PLP max-
imizes the number of boxes placed on a rectangular pallet. All boxes have identical rectangular dimensions and, when
placed, must be located completely within the pallet. Boxes may be rotated 90� so long as they are placed with edges par-
allel to the pallet’s edges. The set of all PLP instances with an area ratio (pallet area divided by box area) less than 101
boxes can be represented by 3,080,730 equivalent classes. Our G5-heuristic finds optimal solutions to 3,073,724 of these
3,080,730 classes and in the remaining 7006 classes only differs from the best known bound by one box. We develop three
other heuristics that solve another 54 instances. Finally, we solve the 6952 remaining classes with our exact HVZ algo-
rithm. Only a subset of these classes has been solved previously.
� 2006 Elsevier B.V. All rights reserved.
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We represent each instance of a Pallet Loading
Problem (PLP) with a quadruplet (X,Y,a,b). We
have a rectangular pallet with length X and width
Y (X P Y), and a rectangular box with length a

and width b (a P b). Boxes may be rotated 90� so
long as they are placed with edges parallel to the
pallet’s edges, i.e., the placement must be orthogo-
nal. We assume, without loss of generality, that X,
Y, a, b are positive integers (Bischoff and Dowsland,
1982). We also assume that at least one box can be
placed in the pallet (X P a and Y P b).

The PLP is encountered when trying to maximize
the number of identical boxes with dimensions a
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved
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and b, placed in a pallet with dimensions X and Y

where each box has a ‘‘this side up’’ restriction
[e.g., Bischoff and Dowsland (1982)]. Even without
such a restriction, operational considerations may
dictate the use of vertical layers with the same
height. Considerations regarding stability and safety
of the boxes imply the use of orthogonal placement
[e.g., Dowsland (1987a), Nelissen (1995), and
Young-Gun and Maing-Kyu (2001)]. PLP is also
present in some cutting stock and floor design
settings.

Dowsland (1984) establishes that PLP instances
can be divided into classes with the same optimal
placement pattern. Martins and Dell (2007) define
the Minimum Size Instance (MSI) of an equivalence
class of PLP, show that every class has one and only
.
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one MSI, and then enumerate all 3,080,730 equiva-
lence classes with an area ratio (pallet area divided
by box area) smaller than 101 boxes. The complete
set of instances can be accessed at http://www.pal-
letloading.org. This paper presents new bounds,
heuristics, and an exact algorithm for PLP and dem-
onstrates their use by solving the MSI from all
3,080,730 equivalence classes. Only a subset of these
classes has been solved previously.
Fig. 1. Feasible placement for instance (85, 66, 8, 7). Diagonal
elements are identified with the letter D. Main elements are
identified with the letter M.
1. Partition, H-box, V-box, and block

Given an instance (X,Y,a,b) of PLP, N(X,Y,a,b)
is the number of boxes in an optimal placement and
W(M,X,Y,a,b) � X * Y �M * a * b is the waste
encountered for M boxes where M 6 b(X * Y)/
(a * b)c. Also Ax � b X/ac, Ay � bY/ac, Bx � bX/
bc, and By � bY/bc.

Let (n,m) denote an ordered pair of non-negative
integers satisfying n * a + m * b 6 S for a pallet
dimension S, (X or Y). Then, the ordered pair
(n,m) is called a feasible partition of S. If n and m

also satisfy 0 6 S � n * a � m * b < b then (n,m) is
called an efficient partition of S (Bischoff and Dows-
land, 1982). Dowsland (1984) shows that if two
instances of PLP possess the same set of efficient
partitions for both the pallet width and length, then
both instances share the same set of optimal place-
ments. If n and m satisfy n * a + m * b = S, then
(n,m) is called a perfect partition of S (Dowsland,
1984). The set of all perfect partitions of pallet
dimension S is denoted P(S,a,b).

We define an H-box (V-box) as a box with its
largest dimension oriented horizontally (vertically).
We also define a block as a rectangular subset of a
placement such that no box is only partially
included in the rectangle. In other words, a block
partitions the boxes of a placement into two groups,
those inside and those outside the block. If all boxes
in a block have the same orientation (V-boxes or H-
boxes), then the block is called a homogeneous block

(Scheithauer and Terno, 1996). A homogeneous
block of V-boxes (H-boxes) is a V-block (H-block).

A hollow block or a diagonal block (Fig. 1) con-
tains boxes in one orientation, across one diagonal
of the block, surrounded by boxes in the other ori-
entation. Each homogeneous block placed along the
diagonal (away from the diagonal) of the pattern is
called a diagonal element block, or diagonal element
(main element blocks, or main elements). An unused
region is called a hole.
2. Selected PLP heuristics

One-, two-, four-, and five-block heuristics (e.g.,
Nelissen, 1993) are among the simplest to imple-
ment. The one-block heuristic places all boxes with
the same orientation; a constant-time computation
determines the best orientation. All n-block heuris-
tics select a size for the first block, then for the sec-
ond block, until the last block is placed.

The heuristic proposed by Scheithauer and Terno
(1996), the G4-heuristic, recursively applies a four-
block heuristic. There is no a priori limitation on
the number of recursive calls. The heuristic pro-
posed by Morabito and Morales (1998), referred
to here as M&M, uses 1st-order cuts and generates
1st-order patterns. A 1st-order pattern is a pattern
generated by successive guillotine or 1st-order cuts.
A guillotine cut divides a piece of larger stock in two
smaller pieces with a cut from one side to the other
[e.g., Gilmore and Gomory (1965), Christofides and
Whitlock (1977), Wang (1983), and Oliveira and
Ferreira (1990)]. A cut is 1st-order if it produces five
new rectangles arranged in such a way as not to
form a guillotine cutting pattern (Arenales and
Morabito, 1995).

Nelissen (1993) describes a family of diagonal

heuristics, which generate diagonal block patterns
and proposes the angle heuristic and the recursive
angle heuristic. These heuristics place blocks of
boxes, with a given orientation, along the diagonal
of the pallet, surrounded by boxes with the opposite
orientation. The main difference between the diago-

http://www.palletloading.org
http://www.palletloading.org


Best_Solution 0
For each (i, j) 2 P(X,a,b), i > 0, j > 0

For each (f,g) 2 P(Y,a,b), f > 0, g > 0
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nal heuristics and the angle heuristics is that the
placement obtained with these latter procedures
may not be symmetric, and holes can have different
sizes. The diagonal heuristic restricts each diagonal
block to have a width of only one box; the angle
heuristic is recursive and has longer run time than
the diagonal heuristic.
If i * a 6 j * b and g * b 6 f * a,
diagonal block is H-block

For d from 2 to GCD(j, f) + 1
S d * (i * g + j * f/(d � 1))
If S> Best_Solution then update
Best_Solution

If j * b 6 i * a and f * a 6 g * b,
diagonal block is V-block

For d from 2 to GCD(i,g) + 1
S d * (f * j + i * g/(d � 1))
If S > Best_Solution then update
Best_Solution

Otherwise, the solution has only four
blocks
3. The hollow block heuristic

We propose the Hollow Block (HB) heuristic. It
has more flexibility than the diagonal block heuris-
tic because it allows the diagonal elements to have
more than one box across the width, and achieves
shorter run times than the angle heuristic because
it only looks for patterns generated by perfect parti-
tions of the length and width. It only considers
blocks that cover the whole pallet, with area wasted
only by holes.

The HB heuristic selects compatible pairs of per-
fect partitions for both length and width, and uses
these partitions to define the dimensions of the ele-
ments of the hollow block. Let (i, j) 2 P(X,a,b),
for i > 0 and j > 0, and (f,g) 2 P(Y,a,b), for f > 0
and g > 0, be the selected perfect partitions. If
i * a 6 j * b and g * b 6 f * a, the diagonal elements
are formed by H-boxes, and the main elements
formed of V-boxes. If j * b 6 i * a and f * a 6 g * b,
the diagonal elements are formed by V-boxes, and
the main elements formed of H-boxes. Otherwise,
there can be only four blocks, two with H-boxes,
and two with V-boxes. After defining the composi-
tion of the diagonal elements, the heuristic deter-
mines if it is feasible to place main elements with
the necessary dimensions to generate the hollow
block.

If there are d diagonal elements in a placement,
then there are d * (d � 1) main elements in the place-
ment. Ordering the diagonal element from left to
right, with 1 being the leftmost block and d the
rightmost, each diagonal block i has d � i main ele-
ments to the right, and d � i above, orPd

i¼12 � ðd � iÞ ¼ d � ðd � 1Þ main elements. If the
diagonal element is formed by V-boxes, as in
Fig. 1, it is feasible to create the main elements if
i � 0mod(d � 1) and g � 0mod(d � 1). To find d,
the HB heuristic tries integers from two up to
GCD(i,g) + 1, the greatest common divisor of i

and g plus one. If the diagonal element is formed
by H-boxes, the same considerations are valid for
j and f. In the example in Fig. 1, i = 8, g = 6, and
d = 3.

The pseudocode for the HB heuristic is
4. Easily computed bounds

An easily computed and intuitive bound is the
Area Ratio (AR) Bound, b(X * Y)/(a * b)c. Smith
and De Cani (1980) and Dowsland (1985) report
the AR bound is equal to the optimal solution in
about 15% of randomly generated test instances.

Another intuitive bound is bX/bc * bY/bc, the
maximum number of boxes in a (horizontal) row
multiplied by the maximum number of boxes in a
(vertical) column. If b is relatively close to a, then
this Maximum Product (MP) Bound can outper-
form the AR bound. For example, the instance
(23, 23, 5, 4) has an AR bound b(23 * 23)/(5 * 4)c =
26 and a MP bound of b23/4c * b23/4c = 25.

Selecting an instance in the equivalence class that
minimizes the AR bound may provide a tighter
bound. Proposed by Dowsland (1984), this pro-
duces exact bounds in at least 92% of her 5000 ran-
domly generated test cases. We call this bound the
Minimum Area Ratio (MAR) Bound.

Barnes (1979) proposes a bound based on boxes
being represented by patterns of a · 1 or b · 1 boxes.
Because the solution to problems with unit width is
easily obtained (Barnett and Kynch, 1967), Barnes
computes the wasted area obtained when placing
only a · 1 or only b · 1 boxes to produce an upper
bound on the number of boxes placed.
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Letchford and Amaral (2001) presents a more
complete discussion on bounds for PLP, including
dominance results and additional bounds such as
one based on linear programming found in Iser-
mann (1987).
5. Performance of selected heuristics and easily

computed bounds

Martins and Dell (2007) show the set of all PLP
instances with an area ratio (pallet area divided by
box area) less than 101 boxes can be represented
by 3,080,730 equivalent classes. For each equiva-
lence class, we compute the MP, MAR, and Barnes
bound. We then sequentially apply the one-block,
two-block, HB, and five-block heuristics; stopping
if a placement is found that equals the best bound.
Table 1 shows the results. The first column is the
maximum number of boxes that can be placed in
a class instance as given by the area ratio. The sec-
ond column lists the total number of classes. The
next four columns show the number, and cumula-
tive percentage, of classes with an optimal place-
ment computed by a heuristic and verified with
the MP, MAR, or Barnes bound. The last column
shows the number of classes with the best upper
bound larger than the best placement generated.
For example, the first row shows that among the
662 distinct equivalence classes with up to 10 boxes,
the one-block heuristic optimally solved instances in
469 classes (70.8%), the two-block solved an addi-
tional 166 instances, totaling 635 classes (95.9%)
solved with these two heuristics. The HB and five-
block heuristics solved instances in the 27 remaining
classes.

Considering instances with an area ratio less than
101 boxes, the one- and two-block heuristics com-
bined provide optimal solutions for 86.2% of the
equivalence classes. Adding the results of the other
two heuristics, HB and five-block, these heuristics
solve 95.0% of the instances. These percentages do
not include the cases where a better bound could
prove optimality.
Table 1
Absolute (and cumulative percentage) performance of simple heuristics

Number of boxes Number of classes One-block Two-b

10 662 469 (70.8) 16
20 7309 4646 (63.6) 215
50 216,095 128,204 (59.3) 63,32
100 3,080,730 1,812,852 (58.9) 840,01
6. Bounds based on the existence of single perfect

partitions

Bounds in this section are applicable when, given
an instance (X,Y,a,b), there is only one perfect par-
tition in the width (or length) of the pallet, and plac-
ing M P N(X,Y,a,b) boxes produces wasted area,
W(M,X,Y,a,b), smaller than the corresponding
dimension Y (or X) of the pallet.

The first case considered is when this single per-
fect partition consists of only V-boxes or H-boxes;
we call this partition a Homogeneous Perfect Parti-
tion. Given a Homogeneous Perfect Partition, we
can derive a bound using a smaller related instance.

We prove the case for the width, with H-boxes.

Theorem 1. Let (X, Y,a,b) be an instance of PLP,
with the only perfect partition in Y is given by By *
b = Y, N(X, Y,a,b) 6M 6 b(X * Y)/(a * b)c, and

W(M,X,Y, a,b) < X + a. Then N(X + a,Y,a,b) 6

By + M.

Proof. When comparing pallets for instances
(X + a,Y,a,b) and (X,Y,a,b), the larger has an
added area of a * Y or a * b * By (because-
By * b = Y). This added area permits the addition
of at least By boxes. We show that no more than
By can be added.

The pallet for instance (X + a,Y,a,b) can be
partitioned into X + a columns of unit length, each
of which is composed of Y unit squares, as illustrated
by the dashed lines in Fig. 2. In a normal placement,
every unit square on the pallet is either completely
covered or uncovered by a box. We first observe that
for an optimal solution M = N(X,Y,a,b) there must
be at least one unit column with zero waste because
W(M,X,Y,a,b) < X + a and therefore W(M 0,X + a,
Y,a,b) < X + a for M0 P M + By. Any such unit
column with zero waste must be covered with
H-boxes because this corresponds to the only perfect
Y-partition.

If there is a group of H-boxes completely aligned
in an optimal solution, as in Fig. 2a, it is easy to see
that we can detach the block formed by this group,
lock HB Five-block Unsolved classes

6 (95.9) 19 (98.8) 8 (100.0) 0 (0.0)
6 (93.1) 236 (96.3) 203 (99.1) 68 (0.9)
2 (88.6) 4455 (90.7) 13,291 (96.8) 6823 (3.2)
9 (86.2) 45,405 (87.7) 225,929 (95.0) 156,527 (5.0)



Fig. 2. Examples of groups of H-boxes covering a perfect
partition used in the proof of Theorem 1. Here By = 10 and the
dashed lines show a column with width 1.
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which has By boxes, and reconnect whatever is on
either side of the block. The reduced instance has
solution N(X,Y,a,b), the combined solution is
By + N(X,Y,a,b).

If the group of H-boxes is present in an optimum
solution in a more arbitrary shape, as in Fig. 2b, then
we can transform this solution to another, with the
boxes forming a homogeneous block. Given an
arbitrary group of By H-boxes, such that the
horizontal coordinates of the all boxes in this group
overlap in at least one unit of length, we perform the
transformation by initially removing these By H-
boxes from the pallet. This operation partitions the
boxes in the pallet in two sets: those to the left of the
removed block, the left set, and those to the right, the
right set. In the next step of the transformation, all
the boxes of the right set are pushed to the left, until
they touch a box from the other set. Because of the
existence of a homogeneous perfect partition, H-
boxes from the right set can be pushed by a distance
of exactly a units to the left forming together with
the left set a reduced pallet of length X � a. This
creates an empty region at the right edge of the pallet
with length of a units, where the removed group of
H-boxes can be placed, after being aligned. Fig. 2c
shows the puzzle-like result of removing the group of
H-boxes. The reduced instance also has solution
N(X,Y,a,b), the combined solution is By + N(X,Y,
a,b).
Table 2
Number of instances with an open result in Table 1 bounded by the S

Number of
boxes

Number of
classes

Unsolved from
Table 1

One-
block

20 7309 68 20
50 216,095 6823 1874
100 3,080,730 156,527 37,350
If we only have an upper bound M P N(X,Y,
a,b) with W(M,X,Y,a,b) < X + a. We know if
M 0 = N(X + a,Y,a,b) is the optimal number of
boxes then M 0 = By + N(X,Y,a,b) 6 By + M.
Therefore, N(X + a,Y,a,b) 6 By + M. h
Corollary 1. Let (X,Y, a,b) be an instance of PLP,
with M P N(X,Ya,b) and W(M,X,Y,a,b) < X +

j * a. If the only perfect partition in Y is given by

By * b = Y, then N(X + j * a,Y,a,b) 6 j * By + M.

This result follows directly if we apply recursion
to the previous result.

The cases of homogeneous perfect Y-partitions in
a, and both cases of X-partitions, follow the same
line of reasoning. The sizes of pallets to which this
bound applies are limited by Y 6 X < a * b, because
for larger sizes if there is a homogeneous perfect
partition given by m * b, then there is another per-
fect partition, b * a + (m � a) * b.

The procedure to rearrange boxes adopted in the
proof of Theorem 1 only applies to homogeneous
partitions that are perfect. When considering other
homogeneous efficient partitions, there is at least
one unit strip that is not covered with a box. In this
case, the considerations associated with Fig. 2 do
not apply.

We refer to this bounding procedure as the Single
Homogeneous Perfect Partition (SHPP) Bound.
Although the requirements to apply this bound are
restrictive, Table 2 shows that more than 50% of
the instances not bounded by other elementary pro-
cedures (as reported in Table 1) are bounded by this
new simple bound. The first three columns are from
Table 1. The next four columns contain the number
of classes with an optimal placement found by the
heuristic and verified by the SHPP bound. The last
column contains the number of remaining classes
without a proven optimal solution.

A different bound based on single perfect parti-
tions can be computed, when W(M,X,Y,a,b) 6 b

or W(M,X,Y,a,b) 6 a, with M P N(X,Y,a,b),
using some results from Nelissen (1995). Nelissen
defines lxi,j as a lower bound on the number of unit
HPP Bound

Two-
block

Hollow-
block

Five-
block

Unsolved
classes

29 0 2 17
1823 0 371 2755

35,808 0 7726 75,643
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rows in any optimal solution where boxes in each
such unit row correspond to X-partition (i, j), and
lyf,g as the lower bound on the number of unit col-
umns in any optimal solution where boxes in each
such unit column correspond to Y-partition (f,g).
For any optimal solution, he shows if

X-lyf,g < a, then the number of H-boxes is a mul-
tiple of g,
X-lyf,g < b, then the number of V-boxes is a mul-
tiple of f,
Y-lxi,j < a, then the number of V-boxes is a multi-
ple of j, and if
Y-lxi,j < b, then the number of H-boxes is a mul-
tiple of i.
Theorem 2. Let (X, Y,a,b) be an instance of PLP,

with N(X,Y, a,b) 6M 6 b(X * Y)/(a * b)c, W(M,X,

Y,a,b) < b, and assume that the only perfect

Y-partition is n * a + m * b = Y. Then the number of
H-boxes in the solution is a multiple of m, and the

number of V-boxes is a multiple of n.
Proof. Because (n,m) is the only perfect Y-partition
and W(M,X, Y,a,b) < b, there are more than X � b

unit columns where boxes in these unit columns cor-
respond to Y-partition (n,m). Otherwise, more than
b unit columns, each with at least one unit of waste,
would be present, and the total waste would be lar-
ger than W(M,X,Y,a,b). Then lyn,m > X � b, X �
lyn,m < b, the number of H-boxes is a multiple of
m, and the number of V-boxes is a multiple of n,
as shown by Nelissen. h

The same results can be shown for partitions of
X.

One example of application of this bound is the
class of instance (14, 13, 4, 3). The area ratio bound
is 15, with 2 units of waste. Because W(15, 14, 13,
4, 3) = 2 < b = 3, and there is only one perfect
X-partition, (2, 2), the number of H-boxes, and
V-boxes, is even. The bound is reduced to 14, an
even number, and the solution obtained by the
two-block heuristic is now known to be optimal.
Table 3
Number of instances with an open result in Table 2 bounded by the S

Number of
boxes

Total number
of classes

Unsolved from
Table 2

One-
block

20 7309 17 0
50 216,095 2755 0
100 3,080,730 75,739 0
We refer to the bound generated by this procedure
as the Single Perfect Partition (SPP) Bound. Table
3 presents updated results using the SPP bound. The
first three columns are from Table 2. The next four
columns contain the number of classes with an opti-
mal placement found by the heuristic and verified by
the SPP bound. The last column contains the num-
ber of remaining classes without a proven optimal
solution.

7. Bounds based on relaxed classes

We extend the use of equivalence classes by using
relaxed and restricted classes [e.g., Letchford and
Amaral (2001)]. Let (X,Y,a,b) and (Z,W,c,d) be
instances of PLP, with the set of feasible partitions
given by F(X,a,b), F(Y,a,b), F(Z,c,d), and F(W,c,
d). If F(X,a,b) � F(Z,c,d) and F(Y,a,b) � F(W,
c,d), we define (Z,W,c,d) to be a relaxed class of
(X,Y,a,b), and represent it (Z,W,c,d) � (X,Y,a,b),
and define (X,Y,a,b) to be a restricted class of
(Z,W,c,d), (X,Y,a,b) � (Z, W,c,d).

If (X,Y,a,b) � (Z,W,c,d), then N(X,Y,a,b) 6
N(Z,W,c,d) and we refer to a bound determined
from a relaxed instance as a Relaxed Class (RC)

Bound. The time required to find relaxed classes is
proportional to the number of efficient partitions
and to the time required to find the MSI of a class
(Martins and Dell, 2007). The procedure increases
each efficient partition by one unit, of a or b,
depending on the case, and computes the MSI of
the resulting relaxed class, if feasible.

An example of where the RC bound applies is
instance (26, 19, 7, 3). The best bound for this
instance used in Table 3 is 23. However, this can
be reduced to 22 because (26, 19, 7, 3) � (18, 13,
5, 2) and N(18, 13, 5, 2) 6 22 using Barnes bound.
Table 4 presents updated results using the RC
bound. The first three columns are from Table 3.
The next four columns contain the number of clas-
ses with an optimal placement found by the heuris-
tic and verified by the RC bound. The last column
contains the number of remaining classes without
a proven optimal solution.
PP bound

Two-
block

Hollow-
block

Five-
block

Unsolved
classes

1 0 2 14
20 1 28 2706

128 19 234 75,358



Table 4
Number of instances with an open result in Table 3 bounded by the RC bound

Number of
boxes

Total number of
classes

Unsolved from
Table 3

One-
block

Two-
block

Hollow-
block

Five-
block

Unsolved
classes

20 7309 14 0 1 0 0 13
50 216,095 2706 115 589 2 218 1782
100 3,080,730 75,358 4298 16,260 61 8107 46,632
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8. Bound based on similarity of classes

A bound from a restricted class may also be help-
ful in bounding a relaxed class. Consider the instance
(37, 30, 8, 3). The best bound for this instance in
Table 4 is 46 and the best bound for its restricted
instance (24, 19 5 2), (24, 19, 5, 2) � (37, 30, 8, 3), is
45 by the AR bound. The perfect Y-partition
(0, 10) is feasible only in the relaxed instance; other-
wise they share the same set of feasible partitions.
Restricted to using the (0, 10) partition, N(37, 30,
8, 3) = max{N(37 � 8 * i, 30, 8, 3) + 10 * i, i = 1, 2,
3, 4} = 45 (using the result of Theorem 1). Thus
N(37, 30, 8, 3) 6 45 because when the Y-partition
(0, 10) is used, the best result is 45 and if it is not
used, the best result is also 45.

We apply this when having two classes that differ
only in a homogeneous perfect partition and refer to
this bound as the Combined Perfect Partition and

Restricted Class (CPPRC) Bound. Table 5 updates
results using this new bound. The first three col-
umns are from Table 4. The next four columns con-
tain the number of classes with an optimal
placement found by the given heuristic and verified
by the CPPRC bound. The last column contains the
number of remaining classes without a proven opti-
mal solution.

9. The G5-heuristic

The G5-heuristic, like the M&M Heuristic, looks
for 1st-order patterns, but applies the HB heuristic
to identify partial solutions of a hollow block pat-
tern. The hollow block pattern, as shown in
Fig. 1, is a G4-pattern, and also a 1st-order pattern.
Table 5
Number of instances with an open result in Table 4 bounded by the C

Number of
boxes

Total number of
classes

Unsolved from
Table 4

One-
block

20 7309 13 0
50 216,095 1782 0
100 3,080,730 46,632 0
We implement the G5-heuristic with only one level
of recursion.

There are four main loops in the algorithm,
sequentially assigning the dimensions of the four
blocks in corners of the placement. The fifth, or cen-
tral, block has its dimensions defined by the other
blocks as in the five-block heuristic. Each of these
five blocks has a placement computed using the hol-
low block, one-, two-, and five-block heuristics, or
the G5-heuristic, but with no additional recursive
calls.

The wasted area within each block is also com-
puted. At each step of the algorithm, after defining
the dimensions of a block, the cumulative sum of
wasted areas is computed, preventing the explora-
tion of patterns producing too much waste.

In order to avoid looking at symmetric patterns,
the block with the most boxes placed, with the
exception of the central block, is defined to be the
first block at the lower left corner. Whenever a pat-
tern is produced with another block having a larger
number of boxes, the execution of the algorithm
moves to the next pattern. This differs from the
G4 and M&M heuristics.

As in the G4-heuristic, we keep track of all par-
tial patterns produced. Therefore, the solution to
the placement of a block with given dimensions is
stored when it is first computed, and is used again
whenever a block with the same dimensions is
encountered later in the procedure.

Morabito and Morales (1998) present their heu-
ristic run times on a Pentium 100 MHz personal
computer. Scheithauer has an implementation of
the G4-heuristic available for download from the
Internet (CADAP, 2002). We run both G4 and G5
PPRC bound

Two-
block

Hollow-
block

Five-
block

Unsolved
classes

0 0 1 12
24 3 72 1683

289 21 770 45,552



Table 7
Number of instances from Table 5 without a previously proven
optimal solution, solved using the G5-heuristic

Number
of boxes

Total
number of
classes

Unsolved
from Table
5

Solved with
G5-
Heuristic

Unsolved
classes

20 7309 12 10 2
50 216,095 1683 1449 234
100 3,080,730 45,552 38,546 7006
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heuristics on the same set of problems using a Pen-
tium 133 MHz personal computer, so the run times,
presented in Table 6, can be compared with those
reported by Morabito and Morales. As described
by Morabito and Morales, problems D1 and D2
are from Dowsland (1984), N1 to N5 from Nelissen
(1993), and ST1 to ST5 from Scheithauer and Terno
(1996).

Considering the instances presented in Table 6,
the G5-heuristic often performed slower than the
G4-heuristic, and faster than the M&M heuristic
although the results from the M&M were recorded
on a slower computer. When comparing only the
G5-heuristic and the G4-heuristic, on a larger set
of instances, the G5-heuristic was faster for instances
where the bounds were tighter, taking on average
43% of the time required by the G4-heuristic. But
when the best solution provided by the heuristics dif-
fered from the best bound, the G5-heuristic was
slower, taking on average twice the time required
by the G4-heuristic.

Scheithauer (2000) provides a list with 206
instances, from a larger set called Cover II, by Nelis-
sen (1993), containing instances satisfying con-
straints 1 6 X/Y 6 2, 1 6 a/b 6 4, and 51 6 (X *
Y)/(a * b) < 101. These 206 instances are not solved
to optimality by Nelissen’s heuristic. Scheithauer
(2000) reports that the G4-heuristic is able to solve
167 of these instances. Lins et al. (2003) report solv-
ing all instances from the Cover II set; taking a few
hundred seconds for some difficult instances. The
G5-heuristic solves the same 167 instances solved
by the G4-heuristic, and solves two additional
instances, (121, 120, 16, 9), and (107, 65, 10, 7).
Table 6
Run times for a Pentium 100 MHz computer for M&M and a Pentiu
selected set of instances

ID Instance MSI

D1 (22, 16, 5, 3) (22, 16, 5, 3)
D2 (86, 82, 15, 11) (23, 22, 4, 3)
N1 (43, 26, 7, 3) (43, 26, 7, 3)
N2 (87, 47, 7, 6) (87, 47, 7, 6)
N3 (153, 100, 24, 7) (109, 71, 17, 5)
N4 (42, 39, 9, 4) (42, 39, 9, 4)
N5 (124, 81, 21, 10) (64, 41, 11, 5)
ST1 (40, 25, 7, 3) (40, 25, 7, 3)
ST2 (52, 33, 9, 4) (52, 33, 9, 4)
ST3 (57, 44, 12, 5) (57, 44, 12, 5)
ST4 (56, 52, 12, 5) (56, 52, 12, 5)
ST5 (300, 200, 21, 19) (127, 85, 9, 8)

a Indicates that the solution is not optimal.
These two instances have solutions with 1st-order
patterns that are not G4-patterns.

Table 7 presents the number of instances not
solved with the simple heuristics mentioned previ-
ously with a proven optimal solution obtained with
the G5-heuristic. The first three columns are from
Table 5. The next column contains the number of
classes with an optimal placement found by the
G5-heuristic. The last column contains the number
of remaining classes without a proven optimal
solution.

The solution generated by the G5-heuristic differs
from the best known bound by at most one box. As
verified by our HVZ exact algorithm (Section 11),
the G5-heuristic generates optimal solutions to all
instances of PLP with an area ratio less than 51
boxes, and all but 59 of the instances with an area
ratio less than 101 boxes.
10. Higher order non-guillotine heuristics

The Higher-Order Non-Guillotine (HONG) heuris-
tics look for arrangement similar to the optimal
m 133 MHz personal computer for G4 and G5, when solving a

N Run time (second)

M&M G4 G5

23 0.10 0.00 0.00
42 0.50 0.05 0.06

52a 1.60 0.06 0.50
97 46.30 1.21 0.60
90 0.10 1.21 0.01
45 2.00 0.11 0.25
47 5.50 0.16 0.11
47 2.10 0.11 0.19
47 3.10 0.11 0.19
41 0.90 0.11 0.13
48 2.20 0.11 0.21

149 0.10 9.23 0.01
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eight-block arrangement found by Morabito and
Morales (1998) for instance (43, 26, 7, 3). The
HONG heuristics divide the pallet into at most
eight blocks, distributed as shown in Fig. 3. As can
be seen, none is 1st-order. The pattern in Fig. 3a is
a vertical pattern, because it is possible to draw a
vertical line crossing four blocks. A horizontal

pattern, where a horizontal line crosses four blocks,
is shown in (b). The last pattern, (c), is named a
central pattern.

HONG is an extension of the G5-heuristic, with
up to five additional loops, for a total of nine nested
loops. Each of these eight blocks can be placed
using the non-recursive G5-heuristic. We implement
three versions of the heuristic, one for each pattern.
Table 8 lists some instances of the COVER II set
reported unsolved by Scheithauer (2000), solved
using the HONG heuristics. The run times shown
correspond to the time required by a Pentium III
600 MHz computer, using the version of the heuris-
tic that obtains the optimal solution for each
instance.

In addition to instances in Table 8, the HONG
heuristic is able to solve a few other instances not
included in the COVER II set. Table 9 presents
the results of the application of the HONG heuristic
to the instances with open results from Table 7.
Only 6952 classes remain unsolved of which 234
have 50 boxes or less.
Fig. 3. Non-1st-order patterns explored by the HONG heuristic. The p
and (c) is a central pattern.
11. An exact algorithm for PLP – the HVZ

algorithm

Dowsland (1987b) proposes an exact algorithm
for PLP. While the Guillotine PLP is solvable in
Oðlog2X � log2

2aÞ time (Tarnowski et al., 1994), no
similar result has been found for the non-guillotine
case, with some authors questioning even if PLP is
in NP [e.g., Nelissen (1993), Young-Gun and
Maing-Kyu (2001), and Martins (2003)].

We use a coordinate system with origin at the
lower left corner of the pallet with the left lower cor-
ner of box i, when placed in the pallet, represented
by (xi,yi). In the coding, an H-box is represented
by the letter H, and a V-box by the letter V. Each
box is placed in the feasible position that yields
the minimum sum of coordinates, i.e., xi + yi. In
case of ties, the position minimizing yi is selected.
A position is feasible if the box does not overlap
with another box placed previously, and is com-
pletely placed within the pallet.

Fig. 4 presents a feasible placement for instance
(27, 18, 7, 4), with 16 boxes. The corresponding
string is HVHVVVHVVVVVVHVH.

There are feasible placements that cannot be rep-
resented by this coding scheme. A simple example is
instance (7, 7, 5, 2), and the placement depicted in
Fig. 5. The corresponding string would be HVVH,
but when trying to place the third box, the proce-
attern in (a) is a vertical pattern; (b) shows a horizontal pattern;



Table 9
Number of instances, from Table 7, without a proven optimal
solution, solved using the HONG heuristics

Number
of boxes

Total
number of
classes

Unsolved
classes from
Table 7

Solved by
HONG
Heuristic

Unsolved
classes

20 7309 2 0 2
50 216,095 234 0 234
100 3,080,730 7006 54 6952

Fig. 4. Feasible placement for instance (27, 18, 7, 4). The place-
ment can be represented by the binary string HVHVVVHVV-
VVVVHVH, with H indicating an H-box and V a V-box. The
number shown in each box corresponds to the placement order.

Fig. 5. Feasible placement for instance (7, 7, 5, 2).

Table 8
Selected instances from the COVER II set solved to optimality by
the HONG heuristics

Instance Number of boxes Run time (second)

(43, 26, 7, 3) 53 0.50
(49, 28, 8, 3) 57 0.99
(61, 35, 10, 3) 71 2.63
(61, 38, 10, 3) 77 3.66
(67, 37, 11, 3) 75 3.36
(67, 40, 11, 3) 81 7.51
(141, 119, 21, 8) 99 88.17
(93, 46, 13, 4) 82 15.26
(63, 44, 8, 5) 69 3.80
(57, 34, 7, 4) 69 2.64
(106, 59, 13, 5) 96 17.84
(141, 71, 13, 8) 96 18.13
(74, 73, 13, 5) 82 30.45
(74, 49, 11, 4) 82 0.28
(127, 121, 23, 7) 95 1.20
(106, 59, 13, 5) 96 8.68
(76, 74, 13, 5) 86 345.54
(106, 100, 16, 7) 94 11.26
(83, 82, 11, 7) 88 3.48
(104, 69, 12, 7) 85 2.10
(103, 86, 11, 8) 100 15.05
(104, 71, 11, 7) 95 20.47
(75, 51, 8, 5) 95 6.91
(108, 71, 11, 7) 99 10.61
(78, 51, 8, 5) 99 4.54
(61, 38, 6, 5) 77 0.86
(108, 65, 10, 7) 100 2.44
(164, 83, 14, 11) 88 3.38
(105, 53, 9, 7) 88 2.83
(57, 34, 7, 4) 69 1.70
(122, 86, 16, 7) 93 1.97
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dure would place it at position (2, 2), not at position
(5, 0).

We include Z, for zero, representing the position
of the left lower corner of a wasted rectangular area.
In the example above, the placement is now coded
by HVZVH. The Z label occupies the position
(2, 2). The next available position is (5, 0), where
the next V-box is placed. The only position left to
place an H-box is (2, 5).

The wasted rectangle has length and width at least
one unit long, but may have larger dimensions,
depending on the use of normal placement patterns.
In this case, the wasted area covers the region up to
the next positions that could be used to place a box
in a normal placement pattern, i.e., positions with
the coordinates corresponding to integral combina-
tions of a and b. In the example, the wasted area has
dimensions 2 · 2, because positions (3, 2), (2, 3) and
(3, 3) cannot be obtained as combinations of 5 and 2.

As the amount of wasted area is registered when-
ever a Z label is included in the string, we can use
this coding in a depth-first search, fathoming the
branches of the search tree presenting too much
wasted area.

Each node of the search tree corresponds to visit-
ing the point with minimum sum of coordinate val-
ues. The HVZ algorithm selects between placing an
H-box, a V-box, and marking the region as wasted.
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If a box is placed, then all coordinate points covered
by the box are labeled as used. If marked as wasted,
only one coordinate point is labeled, and the area of
the wasted region is added to the total wasted area,
TW. The next node examined corresponds to the
next unlabeled coordinate point. If, at any given step
of the algorithm, the maximum allowed amount of
wasted area, MW, is surpassed (TW > MW), then
the algorithm backtracks. The algorithm terminates
if a feasible placement of N boxes is obtained, or if
all possible labels are explored.

The set of coordinate points is defined in the ini-
tialization of the algorithm, and corresponds to the
cartesian product of the sets of feasible partitions of
the box length and width. In our implementation of
the HVZ algorithm, we use two arrays to represent
these coordinate points:

• A two-dimensional array, with the first dimen-
sion corresponding to feasible partitions of the
length, and the second to feasible partitions of
the width. This array is used when labeling the
coordinate point covered by a box; and

• A one-dimensional array, with pointers to the
coordinate points, ordered by ascending sum of
coordinate values, and then by ascending width.
This array is used to identify the next unmarked
point.

Some experimentation with HVZ reveals some
strategies performed at each node that can yield
shorter run times:

• If the number of boxes loaded is less than bN/2c,
and the total wasted area is already larger than
Table 10
Run times, on a Pentium III 600 MHz, obtained with the HVZ algorit

ID Instance MSI

D1 (22, 16, 5, 3) (22, 16, 5, 3)
D2 (86, 82, 15, 11) (23, 22, 4, 3)
N1 (43, 26, 7, 3) (43, 26, 7, 3)
N2 (87, 47, 7, 6) (87, 47, 7, 6)
N3 (153, 100, 24, 7) (109, 71, 17, 5)
N4 (42, 39, 9, 4) (42, 39, 9, 4)
N5 (124, 81, 21, 10) (64, 41, 11, 5)
ST1 (40, 25, 7, 3) (40, 25, 7, 3)
ST2 (52, 33, 9, 4) (52, 33, 9, 4)
ST3 (57, 44, 12, 5) (57, 44, 12, 5)
ST4 (56, 52, 12, 5) (56, 52, 12, 5)
ST5 (300, 200, 21, 19) (127, 85, 9, 8)
half of the maximum allowed, TW > MW/2, then
the algorithm backtracks. This is justified by the
symmetry of the placements. In this case, the
complement of the packing pattern contains at
least N/2 boxes and at most MW/2 wasted area,
and can be obtained at a later step of the
algorithm.

• After placing a box, verify that there is enough
space between the box and the borders of the pal-
let to place another box. If not, mark the region
as wasted.

• If an optimal placement is formed with smaller
blocks placed together, and if each of these
blocks can be placed in different ways, then we
have several similar, or equivalent, solutions. In
order to avoid searching for solutions on patterns
similar to others already identified as not opti-
mal, we verify if the box being placed completes
a block. If this is the case, we check to see if a
block with the same dimensions has already been
investigated, if the placement of this block is the
same, and, if so, we backtrack.
12. HVZ results

We use the HVZ algorithm to solve the MSI
from the remaining 6952 classes. Most of these
instances solve in a few minutes but 226 require
more than an hour and 23 require more than
24 hours, using a Pentium III 600 MHz computer.
The HVZ confirmed the heuristics found an optimal
solution to all but five instances, (74, 46, 7, 5),
(86, 52, 9, 5), (95, 92, 11, 8), (172, 66, 19, 7), and
(178, 60, 16, 7).
hm and the G5-heuristic for instances from Table 6

N Run time (second)

G5-Heuristic Exact algorithm

23 0.00 0.00
42 0.06 0.00
53 0.05 0.17
97 0.33 4,092.61
90 0.00 0.05
45 0.11 0.55
47 0.05 0.93
47 0.00 0.16
47 0.06 0.44
41 0.00 0.06
48 0.05 2.42

149 0.00 2,247.83
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Table 10 shows some sample HVZ and G5-heu-
ristic solution times for the same instances listed in
Table 6.

13. Complexity of the HVZ algorithm

Using a HVZ string to code any placement
requires at most N + W characters, where N is the
number of boxes placed and W is the wasted area
in an optimal placement. Each of the N characters
corresponding to placed boxes can take two differ-
ent values, with 2N ways to assign these values. If
W characters are necessary to represent wasted
areas, then there are ðNþW

W Þ ways of selecting the
position of these characters in the string.

It takes O((N + W)2) to verify if the pattern
coded by a given string is feasible. As the number
of boxes placed and amount of wasted area gets lar-
ger, the computational effort increases
exponentially.

14. Conclusions

We have presented both heuristic and exact algo-
rithms for the PLP, and employ these algorithms in
concert with a set of bounding procedures, to solve
to optimality all instances of PLP with an area ratio
less than 101 boxes. Only a subset of these classes
has been previously considered and, of those previ-
ously considered, an optimal solution had been
unknown for several instances.
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